Statistical modelling/Multiple regression analysis

The constant in the table of parameter estimates represents the intercept on the y-axis, namely the predicted value of percentage germination for zero sucrose concentration.

The parameter estimates for xsucros and xsucros2 give the regression coefficients. As shown earlier in the polynomial analysis both terms are highly significant.

The values in the parentheses in the equation below are the standard errors (s.e.) for the constant and the regression coefficients, respectively.

 
***** Regression Analysis *****
Response variate: m_pgerm
Fitted terms: Constant + xsucros + xsucros2

*** Summary of analysis ***

d.f.

s.s.

m.s.

v.r.

Regression

2

14955

7477.6

72.78

Residual

45

4623

102.7

 
Total

47

19579

416.6

 
*** Estimates of parameters ***

estimate

s.e.

t(45)

Constant

3.170

3.480

0.91

xsucros

4.417

0.465

9.50

xsucros2

-0.0906

0.0128

-7.09

The fitted equation can be written as: m_pgerm = 3.17 (3.48) + 4.42 (0.46) sucrose – 0.091 (0.013) sucrose2.

Table of content  Back     next